
Theoret. Chim. Acta (Berl.) 48, 127-141 (1978) 

THEORETICA CHIMICA ACTA 

�9 by Springer-Verlag 1978 

Fourier Representation Method for Electronic Structures 
of Linear Polymers 

II. Linear Chain of Hydrogen Atoms* 

Joseph Delhalle** and Frank E. Harris 

Department of Physics, University of Utah, Salt Lake City, UT 84112, USA 

The Fourier representation method described in the previous paper of this 
series is used to make electronic structure calculations for a linear chain of 
equally spaced hydrogen atoms. The electronic wavefunction is assumed to be 
a determinant of doubly-occupied crystal orbitals of modulated-plane-wave 
type, built from one ls Slater-type orbital of screening parameter ( centered 
on each atom. The energy is calculated from the electrostatic zero-order 
Hamiltonian wit!~ exact evaluation of all Coulomb and exchange contributions, 
and is optimized with respect to the lattice spacing and ( value. Good agree- 
ment with work by others is noted, indicating a near-equivalence of modulated- 
plane-wave and tight-binding wavefunctions for this half-filled-valence-band 
system. The linear chain is calculated to be far more stable than cubic three- 
dimensional hydrogen crystals. This fact sheds light on the unusually large 
calculated nearest-neighbor distances in the cubic crystals, and is related to a 
suggestion that under certain conditions the most stable structure for solid 
atomic hydrogen may be of lower symmetry than cubic. 
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1. Introduction 

In the past ten years a large number of theoretical investigations in research areas 
ranging from physics to biochemistry have been devoted to systems which can be 
thought of as one-dimensional crystals. Crystalline polymers (such as polyethylene 
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or nylon) play an important role as plastics and fibers, biopolymers (such as 
DNA, RNA, and polypeptides) are of fundamental importance in life mechanisms, 
and highly anisotropic one-dimensional conductors (such as TTF-TCNQ) con- 
stitute a new challenge for modern technology [2, 3]. To understand the various 
physical and chemical properties of such systems, in particular their conductivities, 
conformational properties, and catalytic activity, it is necessary to have a rather 
detailed knowledge of their electronic structures. Thus far such knowledge has 
most frequently been adduced theoretically by empirical or semiempirical methods, 
~nd in favorable cases confirmed experimentally by techniques such as X-ray 
photoelectron spectroscopy. 

~he successes of such empirical theoretical techniques as the extended Hiickel 
method, and of semiempirical procedures such as the CNDO and INDO methods, 
have affirmed the validity of conventional energy band schemes in describing I-4] 
and predicting [5, 6] the electronic spectra of one-dimensional periodic systems. 
However, because of the crude approximations and arbitrary simplifications in- 
herent in empirical and semiempirical approaches, these approaches are sometimes 
found to yield unreliable results [4]. There is therefore a continuing need for more 
firmly based methods which could be applied at least to some representative one- 
dimensional systems. The results of such prototype studies should be helpful in 
testing and comparing the data produced by simpler and cheaper techniques. 

It is generally accepted that the Hartree-Fock method gives a rather satisfactory 
representation of the ground-state properties of typical closed-shell molecular 
systems. Several attempts have already been made to apply conventional Hartree- 
Fock techniques to polymers [7-12]. The common feature of these approaches is 
that they are direct extensions to infinite systems of the LCAO-MO-SCF method 
originally deduced by Roothaan and Hall for molecules. One class of methods 
treats clusters containing large but finite numbers of atoms by procedures designed 
for molecules; the remaining studies proceed by forming Bitch-wave crystal 
orbitals for a formally infinite crystal. Calculations of the latter type are usually 
referred to as LCAO-SCF-CO (linear combination of atomic orbitals-self con- 
sistent field-crystal orbitals). A recent review of the work in this area is provided 
in Ref. [3]. 

Here we want to report on an alternative approach to a description of polymers at 
the Hartree-Fock level. Our approach differs from the LCAO-based methods in 
that the crystal orbitals, while constructed using atomic orbitals, are net linear 
combinations thereof, but are instead sums of such orbitals modulated by a plane- 
wave phase factor. Such -modulated-plane-wave" orbitals have been found useful 
in studies of three-dimensional crystals possessing half-filled bands, and may 
therefore be expected also to be suitable for partially-filled bands in linear poly- 
mers. In calculational techniques, our approach also differs from most preceding 
studies through the systematic application of Fourier representation methods and 
the exploitation of lattice orthogonality relations. These procedures were found to 
simplify considerably the calculations for three-dimensional crystals, eliminating 
completely the multicenter integral problem encountered in direct-space ap- 
proaches [13, 14]. They also yield a physically appealing partitioning of the total 
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energy into easily interpretable, individually convergent contributions. In addition, 
calculations can be', conveniently carried out in this way for wavefunctions based 
on any type of atomic orbital whose Fourier transform is known. This feature makes 
practical the use of Slater-type orbitals as well as Gaussians, an alternative not 
available with the usual LCAO-SCF-CO methods. While the above calculational 
advantages could also be realized by applying Fourier techniques to LCAO 
wavefunctions, the procedure is simpler when applied to the modulated-plane-wave 
functions. Many of the steps needed to carry out such calculations for linear 
polymers have already been discussed by one of the authors [1, 15]. 

It is our objective to illustrate the approach of this paper with a calculation for a 
simple model system. The system we have chosen is the infinite linear chain of 
equally spaced hydrogen atoms. Although not an experimentally accessible 
system, it is a useful prototype because a number of relevant comparable calcula- 
tions have previously been reported. We will find it of interest to compare our 
calculations with crystal-orbital and atomic-cluster calculations of linear hydrogen 
by other authors [1 1, 12], and also to make a comparison with three-dimensional 
atomic-hydrogen lattices [16, 17]. The comparison with the three-dimensional 
structures will be found to lead naturally to a conjecture as to the most stable 
structure for the hypothetical metallic atomic-hydrogen crystal. 

2. Problem Formulation 
Consider a one-dimensional periodic lattice consisting of a macroscopic number, 
N, of unit cells of length a, with a proton fixed at each lattice point and an equal 
number of electrons distributed along the chain. The electrons are assumed to 
doubly occupy a set of one-electron crystal orbitals of Bloch type, constructed 
from atomic orbitals ~b centered on the protons. Letting [k) denote the crystal 
orbital of Bloch wave number k, we write 

]k) = e O ( r -  (1) 

where r is the position vector measured from an arbitrary but fixed origin, ~ is a 
unit vector in the direction of lattice periodicity, and # and other Greek-letter 
indices refer to the N points of a lattice of unit length (i.e., to ..., - 2, - 1, 0, 1, 
2 , . . . ) .  

The crystal orbitals defined by Eq. (1) are not of the conventional LCAO or "'tight- 
binding" type, but are of the sort we refer to as "'modulated-plane-wave" (MPW). 
These orbitals have the symmetry under translation by a~ which is required by 
Bloch's theorem, but, unlike tight-binding functions, they are not periodic in k. 
In the notation we are using, the Brillouin zone corresponds to a unit range of k, 
from -�89 to +�89 and the reciprocal lattice has cell length 2n/a. Crystal orbitals 
within the Brillouin zone are caused to be orthogonal by the symmetry properties 
inherent in Eq. (1). One-half the crystal orbitals within the Brillouin zone are 
occupied, and for the ground electronic state the occupied orbitals have k values 
in the range - �88 ~< k~< + �88 
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Eq. (1) can conveniently be used with any atomic orbital ~b whose Fourier transform 
is amenable to manipulation; its use need not be restricted to orbitals for which 
multicenter integrals are easily reduced. In the present application, we have chosen 
4) to be the ls Slater-type atomic orbital 

q5 = (ff3/lr)l/2 e -~  (2) 

In addition to the general arguments in its favor, this choice has the advantage of 
facilitating comparison with results for atomic hydrogen, the hydrogen molecule, 
and hydrogen cluster calculations. 

In atomic units (length in bohrs, energy in hartrees), the usual zero-order non- 
relativistic Hamiltonian can be cast in the form 

N 

H= Z (-�89 Z (h~,,9) (3) 
i = 1  l <~i<j<~N 

with 

1 ~ ] r l _ # a ~ l _  1 1 1+ 1 h(rl, ,'z)=rT)- ~ -~E Ir=-~a~l - ~ E [(~-~)a~1-1 
# #v 

# ~ v  

(4) 

Considering the double occupancy of  the crystal orbitals and the antisymmetry 
requirement on the many-electron wavefunction, the expectation value of  the 
total energy takes the form 

+,/, (k I-�89 
E=2N _!7~.,. dk {k[k> 

+1,4 +,.,4 <a:a:'lhla:a:'>-l<a:~'l,.Tdl~'k> 
+2N2 - 1~/4 dk - ~1,4 dk' (5) 

3. Integrals 

The first step toward the calculation of E is the evaluation of  the integrals occurring 
on the right hand side of  Eq. (5). The techniques to be used depend upon the 
properties of  Fourier transforms. We find it convenient to define the Fourier trans- 
formfr(q) of a funct ionf(r)  so that the transform variable is dimensionless and 
scaled like Bloch wave numbers: 

fr(q)= f dr e2=/a-l~'rf(r) (6) 

Other relationships we shall find essential, in a notation consistent with Eq. (6), 
are the following: 

rca dq T T fdrl dr2f(rl)rl~g(r2-R)= 1 f ~2 f  (q)g (-q) e -2~i~-lq'R (7) 
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[f(r)y(r_R)]T(q)= ~ f dpfT(p)gr(q_p) ee~ia '(a-v)" (8) 

fdr f (r)9(r-R)=~xfdpfr(p)gr(-p)e  -2~i~-'v" (9) 

1 V 2 r T _) 2~2 _ 2 s  [ - ~  f (  )] ( p , = ~ y - p  j ~p) (10) 

e -2~ip=~= ~, 5(pz-v) ( l l )  
v = - o f )  v = - o r  

d?T(p) = (2a) 3/2 c~ 5/2 a~ 
, c ~ = - -  (12)  (p2 +0{2)2 21r 

In these equations the r and p or q integrations are over a full three-dimensional 
space. Eq. (7) is the reduction of the electron repulsion integral introduced by 
Bonham, Peacher and Cox [18] ; Eq. (8) is a standard form of the Fourier con- 
volution theorem; Eq. (9) is a consequence of the convolution and inversion 
theorems; Eq. (10) is a standard result [19]; and Eq. (11) is a lattice orthogonality 
relation [20]. Eq. (12) gives the transform of the ls STO. 

We proceed now to the evaluation of the various integrals. We shall find that many 
of the results can be expressed in terms of Fourier transforms of lattice sums of 
orbital products. We therefore introduce the definition 

~T(q)= ~ (r (13)  

The evaluation of 4~r(q) will be presented after the discussion of the integrals in 
which it occurs. 

3.1. Overlap Integral 

The overlap integral for the MPW functions of Eq. (1) is 

(kJk) = Z ( e2~ ~kzr r -  va~)[ e 2~'~ 'k~(o(r-- #a~)) 
f l y  

= N ~ ( r162  #a~)) 
# 

= g~r(0)  (14) 

as may be seen by ,comparison with Eq. (13). An explicit expression for ~bT(0) is 
given in Eq. (23). We note that because of the form chosen for [k), the integral 
(klk) is independent of k. 

3.2. Kinetic Energy Integral 

The kinetic energy integral satisfies the equation 

27r2kZN 
(kl-�89 - ~ ~ ((o(r)lO(r-va~))+X~, ((o(r)-�89162 (15) 

v 
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The first term of Eq. (15) results from application of [72 to exp (2zia-lkz); the 
second term from its application to q~(r-v~).  The term in which each of these 
factors is differentiated once vanishes due to symmetry. The sum in the first term 
of Eq. (15) is simply ~U(0); the second term is more complex but may be processed 
using Eqs. (9), (10), and (12). We then have 

(kl-�89 Y, 7z ~ j(p2+~2)4p2dp e-2~i~P=] (16) 

We next express p in the cylindrical coordinates (t, 0, p~), where t= @2 § 
0 = tan-1 (pyp~), and dp= t dt dO dp z, performing the 0 integration (which is 
trivial) and the p~ integration after substitution of Eq. (11). The result is 

1 2 2rc2N[k2~T(O) +16~5~1Z~ t(t2 + v2) dt 7 
<kl-~[7 Ik> = - U -  Jo (17) 

Finally, we integrate over t, leaving summations over v which we have previously 
encountered and which can be evaluated in closed form (see Appendix A of 
Ref. [17]). We ultimately reach 

<kl_�89 2~2N = - U -  [k ~ ~(0) 

+ ~2(ctnh ( ~ ) +  ~ [ 1  _ 2 ~  ctnh ( ~ ) ]  csch z (~) ) ]  (18) 

3.3. Coulomb and Exchange Integrals 

In the first paper of this series [1] it was shown how the Coulomb and exchange 
contributions to the potential energy could be reduced to expre .sions involving 
~b r (q). In order to avoid the introduction of divergences in the expression for the 
Coulomb energy, it was found to be necessary to use care in the grouping of the 
various terms. It was then possible to use Eq. (7) to obtain the result 

In +-- f I' Z a rca u 
0 0 

• [~(q.)~T(_ q.)_ ~T(q~)~(o)- ~(o)~(-q~) 
1 

+ 6uo s 2 + e2 45 r(0)~ r(0) (19) 

We have introduced the notation q. to stand for the point q with cylindrical co- 
ordinates s, q~, #; we shall later use qo to refer to the point (s, q~, 0). 

The exchange energy reduces without difficulties to the expression 

2r~ aO 

(kk' rl.,k'k> ~-?I d~ sds 
7ca 

o o 

Evaluation of ~OT(q~) is discussed in the subsection to follow. Eqs. (19) and (20) 
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show that the Coulomb integral (kk'lhlkk') is independent of  k and k', but that 
the exchange integral is not. 

3.4. Evaluation of ~r(q) 

The foregoing subsections show that we will need to evaluate ~br(q) for q = 0  and 
for nonzero values of  integer or zero z component (in cylindrical coordinates, 
points (s, ~0, #)). We consider first the simpler case q = 0. Referring to the definition 
for ~r(q) given in Eq. (13) and there setting q=0 ,  we apply Eqs. (9) and (12) to 
obtain 

oo 

r 8~ 5 ~' dp q~ (0)=--~-~..: ,) (p2_~2).!- e-2'~'~v" (21) 

0 

Converting p to cylindrical coordinates t, 0, Pz, using Eq. (11), and integrating 
over 0 and Pz, we find 

o9 

T ( 0 )  
~ o  (t 2 +v2 +~2)4 

0 

Carrying out the t integration and the v summation [I 7], we have the final result 

q~ r(0) = ctnh (~c0 + nc~(1 + ~c~ ctnh (1co0) csch2(~) (23) 

Proceeding next to rLonzero q values, we combine Eqs. (8), (12) and (13) to obtain 
the preliminary formula 

~o 

dp e 2~I~- pz)v 
~T(q)= ~2  5 ~ JiP 2 +~)2(]q_p]2 _~_ 0 t 2 ) 2  (24) 

0 

Introducing cylindrical coordinates q = (s, cp, ~) and p = (t, 0, p~) (remember that 
we only need q values of  integer or zero z component), Eq. (24) becomes 

+ 0o o9 2r~ 

- 0 0  0 0 

1 
x(t2+p2+c~2)2[s2+t2 2stco s(O_cp)+(#_pz)2+~2] 2 (25) 

We continue by using Eq. (11) and integrating over pz, then carrying out the 0 
integration. Note that, due to the symmetry of  the problem, r r does not actually 
depend upon (p. We then have for nonzero s (changing the integration variable 
from t to u = t 2) 

~b r(s, cp, ,~ [(A + C)I~ + Io] (s > 0) (26) 7~ ~2 
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with 
o0 

f du (27) I . =  (u_A).+l(u2 2Bu+CZ)3/2 
0 

and A =  --  (#-}- Y)2 --  IX2, B : S 2 - - ( V 2 - 1 -  0C2), C~-$2~-v2-}-0~ 2 

We now evaluate I~ and Io, and to the extent possible reduce the summations to 
closed forms. For nonzero s, we obtain the final formula 

#) 8e 5 { n 
r(s' q~' = - - n  2(s2+ #2) 

[(�88 _ 132 + cd)g~(nfl) + (�88 _ cd + fl2)c~-1 ctnh (nc0 

3g2(nfl) 
s 2 +#2 + 4e2j  

~ . - 2 1 ,  [C2+TC-AB'~I 
+ 27-3[l+3(B-A)(A+t~)7, /ln~-~-~_~_~)-); (s>O) 

(28) 
with 

//$2 ~2S2 "~1/2 
' 

7=(AZ +C2-2AB) l/z, 
gl(nfl)=f1-1 ctnh (nil) for U even 

= fl- 1 tanh (nil) for # odd, 

g2(nfl) = fl- 1 ctnh (nil) + rc csch 2 (nil) for # even 

___fl-1 tanh (n f l ) -n  sech 2 (nil) for # odd 

We were not able to reduce the logarithm-containing sum to a closed analytical 
expression. The formula corresponding to Eq. (28) when s = 0 is not difficult to 
derive but will not be needed because we use �9 r(s, r in numerical integration 
formulas not requiring its value for zero s but nonzero #. 

4. Total Energy 

We are now ready to evaluate the expression for the total energy E given in Eq. (5). 
We may divide E into kinetic, Coulomb, and exchange contributions. 

Taking first the kinetic energy E K, from Eqs. (14) and (18) we have 

+ i / 4  

2N(2n2) f ( ctnh (ncO+ne[l-~nc~ ctnh (no0] csch 2 (he)) 
EK= \-~-j dk kZ+e 2 ctnh (ne)+ne[1  +2n~ ctnh (ne)] csch 2 (ne)J 

- 1/4 
l--I/2n'~2 [- 1 / / 0~2 // 4ct2n2 ctnh (ncO csch2 (n~) "~-I (29) 

=N\aj L ~ + 2 - \  1 ctnh (ne )+ne [ l  +~ne ctnh (he)] csch 2 fire) )J 
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Because of the MPW choice for Ik) the kinetic energy is naturally divided into 
free-electron and local contributions. 

We next consider the Coulomb contribution E c . Because (kk ' lh lkk ' )  (cf. Eq. (19)) 
does not depend upon k, k', or the angular coordinate q0, the integrations over 
these quantities are trivial. The remaining integration, over s, is well behaved 
and may be obtained by a straightforward numerical quadrature. Recognizing 
that ~br(- q) = ~T(q), we have the working formula 

co 

Ec-- a ~ T ~ ( O ) [ J s  \ r(q~ 2~br(qo) s2+~2 qsr(0) 

0 co 

~ - 2  , u = l  ~ ,) S(-2-~2['I~r(q')~br(q")--2q~r(q")4~r(o)]} ( 3 0 ,  

0 

Eq. (30) may be given a simple physical interpretation if we note that its last term 
describes the entire Coulomb energy in the limit of a uniform electron distribution. 
The other terms describe contributions associated with the nonuniformity of the 
electron distribution, those quadratic in q, or qo giving the modification of the 
electron repulsion energy and those linear in these variables giving the modification 
of the electron-nuclear attraction energy. 

, - 1  t Finally, we consider the exchange energy, E x. Although ( k k  ]q21 k k )  does 
depend upon k and k', an examination of Eq. (20) indicates that the k and k '  
integrations will all be of the form 

+ 1/4 + 1/4- 

f f (?-) dk d k ' s 2 + ( t ~ + k _ k , ) 2 = ( i t + � 8 9  + (/~-�89 tan-* 

- U 4  - 1 / 4  

-2ptan-1 4- in [s z+(/a 1 2 2 

Although the integrand on the left side of Eq. (31) becomes singular at s=  # =  0 
and k = k ' ,  the right hand side shows the integral to be well conditioned and 
susceptible to the usual methods of numerical quadrature. This point is illustrated 
by the numerical values of this integral given in Table 1. 

Table  1, N um er i ca l  values o f  the exchange-energy  integral,  Eq. (31) 

s p = 0  ~ = 1  p = 2  p = 3  

0.00 1.57080 0.0 0,0 0.0 

0.01 1.47255 2.87641 x 10 -3  6,45366 x 10 4 2.81705 • 10 -4  

0.05 1.24037 1.43334 x 10 -2  3,22475 x 10 -3  1.40814 x 10 -3  

0.10 1,04759 2 . 8 3 6 7 8 x 1 0  2 6 . 4 3 6 5 0 x 1 0  3 2 . 8 1 3 8 6 x 1 0 - 3  

0.50 4.38825 x 10 - z  1.07756 x 10 - l  3.02362 x 10 -2  1.36925 x 10 -2 

1.00 2 . 4 0 5 0 4 x 1 0  - I  1 . 2 7 4 6 6 x 1 0  -1 5 . 0 9 3 0 3 x 1 0  2 2.52742x10 -2  

2.00 1 . 2 3 7 2 9 x l 0  ~ 9 . 9 8 2 1 2 x 1 0  2 6 . 2 8 2 1 4 x 1 0 - 2  3 . 8 6 8 0 0 x 1 0 - 2  

5.00 4 ,99170•  10 2 4 . 8 0 1 1 9 x 1 0  -2  4 . 3 0 7 5 6 x 1 0  -2 3 . 6 7 6 7 2 x 1 0  -a  

10.00 2.49896 x 10 -2  2.47427 • 10 -2  2.40303 x 10 -2 2.29299 x 10 . 2  
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With the aid of Eq. (31), we find the following working formula for the exchange 
energy, in which the s integration is to be carried out numerically: 

(x? 

S 2 

2N { f ds ~ r (qo)Cbr (qo ) Itan _ l (1D + s ln ( s ~  ) l Ex = ar r(0)~ r(0) 
0 

o0 1 

+ ~=lfds~br(qu)cbr(q,)[2(#+�89189189 ) 

~ ]} - 4# tan - 1 _~+ s In (s2 + #a)2 (32) 
+ (# + 

Eq. (32) shows that the exchange energy consists of a free-electron-like contribu- 
tion (# = 0) and a correction term which takes into account the nonuniformity of 
the charge distribution. 

Combining the various contributions, the total energy per atom will be 

E/N = (E K + E c + E x)/N. (33) 

5.  N u m e r i c a l  T e c h n i q u e s  and C o m p u t e r  P r o g r a m m i n g  

In Sect. 3 the formula we derived for �9 r(s, r #), Eq. (28), contains an unreduced 
summation with logarithmic summands. This summation is slowly convergent 
for small # values when s<  1, and we have found it advisable to accelerate its 
convergence by use of the Euler-MacLaurin summation formula [211. The sum, 
whose terms we designate f(v, #, s), is divided into three parts: 

+oo  nb + c o  ha- -  1 

f(v,#,s)= ~" f ( v , # , s ) +  ~" f ( v , p , s ) +  ~ f (v ,# , s )  (34) 
v = - co v = n  a v = n b +  I v = - -  

with n. and n b chosen to make the Euler-MacLaurin formula rapidly convergent 
for the last two partial sums. For the second partial sum, this formula is 

oo 

i , 2 J  t b, # ,  S) 
V = n b  q- 1 

t lb  

+ @6J'(3)(nb, #, s) . . . .  (35) 

A corresponding formula applies to the third partial sum. In evaluating Eq. (34), 
advantage is taken of the symmetry properties off(v, #, s)  : 

f(v, #, s)=f(v, -#, s) (36) 

i ( l +  #, #, s) 

The closed analytical portion of Eq. (28) also presents numerical difficulties when 
# =  0 and s small (<  10- 1). Under these conditions c~ ~fl, and the square bracket 
on the right hand side of Eq. (28) may be rearranged to the form 
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2~z 7~ 2 7~ 4 

+/~ - 1 ctnh (n/~) + c~ - 1 ctnh (roe) 3ga(nfl) (37) 
(fi+e)2 482 

Computer programs for calculating �9 r(s, ~o, #) and the total energy were written 
in FORTRAN for the Univac 1108 computer. The numerical quadratures and 
series expansions were adjusted to yield six significant figures in the final results. 
We found #m,x = 151LO provide the desired precision. For the numerical integrations 
over s, we used ten-point Gauss-Legendre quadratures over the four separate 
intervals (0, 2), (2, 10), (10, 50), and (50, 100). More efficient schemes are un- 
doubtedly possible but we were tentatively satisfied with that described. The time 
needed to calculate an individual 4~ r(s, (p, #) depended upon the parameter values, 
but was typically of the order of 50 msec. A complete calculation of the energy 
for a specified lattice spacing and Slater exponent required approximately 20 sec. 
The program output included the individual-# contributions to the Coulomb and 
exchange energies, the values of E~, Ec, and E x, the virial ratio, and the total 
energy. 

6. Results and Discussion 

We made a number of  calculations of the total energy of an infinite linear chain of  
hydrogen atoms by the method described in previous sections of this paper, varying 
the lattice spacing a and the STO screening parameter ~ to minimize the energy. 
We are confident of  the numerical results to at least five significant figures in the 
total energy. The calculations for the optimum a and ~ values are presented in 
Table 2. As indicated earlier, these calculations are for a determinantal function 
based on doubly-occupied crystal orbitals of  modulated-plane-wave type con- 
taining one ls STO per atom. 

In addition to giving total energy values, Table 2 contains information tending to 
corroborate our claim of numerical adequacy and permitting a more detailed 
interpretation of the', results. In particular, we note the satisfactory convergence 
with summation index # of the contributions to the Coulomb and exchange energy. 
We also observe that the virial ratio, (Ec+Ex)/EK, is satisfactorily close to its 
theoretical value of  - 2. Looking at the two contributions to the Coulomb energy, 
we see that somewhat more than half of it can be attributed to that of a uniform 
electron distribution, the remainder being the effect of the actual nonuniformity. 
Comparing the # =  0 and total exchange energies, we see that the nonuniformity 
increases (i.e., reduces the magnitude of) the exchange energy by about 2%. 

There are a number of other calculations on linear hydrogen chains with which 
we can compare our current results. Calculations on clusters of hydrogen atoms 
have been reported by two groups; those of "'Kislow" et al. [11] (the name is 
actually spelled Liskow) are based on ring configurations of up to 62 atoms, while 
those of  Kertesz, Koller and Azman [.12] are for a 30-atom linear array. Kertesz 
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el  aI. also report a result based on conventional Bloch-wave orbitals (LCAO- 
SCF-CO). All these calculations are based on one ls STO per atom, formed as a 
linear combination of Gaussian-type functions. LCAO-SCF-CO results have also 
been reported by Berggren and Martino [-10], Calais [7], and Andr6 [9]. 

Table 2. Modulated-plane-wave calculations on infinite linear chain of equally 
spaced hydrogen atoms, at optimized lattice spacing a = 1.78 bohr and optimized 
STO screening parameter ~ = 1.78. This calculation has total energy -0.52660 
hartree/atom and virial ratio - 2.003. All tabular entries are energy contributions, 
in hartree/atom 

Contribution Coulomb Exchange Kinetic 

Total -0.75376 
Uniform-distribution - 0.43427 
Total nonuniformity - 0.31949 
Nonuniformity, individual-# terms : 

g =  0 -0.277806 
1 -0.037014 
2 -0.003460 
3 -0.000745 
4 -0.000243 
5 -0.000101 
6 -0.000049 
7 -0.000027 
8 -0.000016 
9 -0.000010 

10 --0.000006 
11 -0.000004 
12 -0.000003 
13 -0.000002 
14 - 0.000002 
15 -0.000001 

-0.29765 +0.52482 
-0.30427 +0.12979 
+0.00662 +0.39503 

m 

+0.006501 
+ 0.000104 
+0.000013 
+0.000002 
+0.000001 
+0.000000 

Table 3. Calculated energies (hartrees/atom) for linear chain of hydrogen 
atoms, at lattice spacing a (bohrs) and STO screening parameter ~. The a 
and ~ values are optimal except for the first calculation of the present study 

Virial 
Method a ~ E ratio 

Cluster, 62-atom ring 1.886 1.130 - 0.52978 
(Ref. [11]) 
Cluster, 30-atom line 1.88 1.130 -0.52912 
(Ref. [123) 
LCAO crystal orbital 1.88 1.130 -0.52787 
(Ref. [12]) 
MPW crystal orbital 1.88 1.130 -0.52385 
(this study) 
Optimized MPW crystal 1,78 1,217 -0.52660 
orbital (this study) 

-2 .150 

-2 .003 
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The cluster and LCAO-SCF-CO calculations of the "Kislow" and Kertesz groups 
are presented in Table 3. This table also includes two calculations of the present 
study, one with the same a and 6 parameters as were used in the studies by others, 
and one with the parameters we found to be optimum. The remaining previous 
calculations contain broken-symmetry orbitals to various extents and are not 
closely comparable to those reported here. The main difference between the cluster 
and crystal-orbital calculations is that the orbitals of the former are not restricted 
to be simple sums of the Bloch-wave type. This additional freedom appears to 
lower the energy by no more than about 0.002 hartrees/atom. The small difference 
between the two cluster calculations is of the wrong sign to be identified with the 
fact that the clusters are of different sizes; using the "Kislow" energies for different 
sized clusters the Kertesz energy would extrapolate to about - 0.5285 hartrees/atom. 

The present study shows the energy to be very little influenced by the use of 
modulated-plane-wave rather than LCAO crystal orbitals. This fact will be 
significant in the comparisons we shall make with calculations of three-dimensional 
atomic hydrogen lattices. We also note that the optimum lattice spacing and STO 
screening parameters are close to, but not identical with those found in the previous 
studies. The change in screening parameter can be directly attributed to the 
difference between MPW and LCAO crystal orbitals, as for nonzero Bloch wave 
numbers k the LCAO orbitals are more spatially inhomogeneous than are MPW 
orbitals of the same ~. For an MPW orbital to provide a spatial distribution as 
similar as possible to that of an LCAO orbital of the same k, the MPW orbital 
would have to be constructed from atomic functions with a larger ~ value. Because 
even after this adjusi:ment the MPW and LCAO wavefunctions are not identical, 
the optimum a values of the two calculations must differ slightly. The effect becomes 
more pronounced as k increases, and the comparison of MPW and LCAO results 
shows that these wavefunctions can still be made quite similar in a situation 
involving a half-filled valence band. 

It is also of interest to compare the present calculations with previous studies of 
three-dimensional lattices. Harris, Kumar, and Monkhorst [16] have calculated 
optimum lattice spacings and energies/atom for simple cubic (sc), body-centered 
cubic (bcc), and face,-centered cubic (fcc) atomic hydrogen crystals. For an MPW 

Table4. Comparison ofmodulated-plane-wave 
calculations on cubic and linear atomic hydro- 
gen lattices. Nearest-neighbor distances ~ in 
bohrs, energies in hartrees/atom 

Calculation 6 E 

Cubic MPW:  sc 2.83 -0 .463  
(Ref. [16]) 

- 0.467 
- 0.468 
- 0.477 

-0 .527  

- 0.027 

Cubic Hartree-Fock : 
(Ref. [22]) 
Linear chain M P W  
(this study) 
Estimated correlation 
energy (Ref. [11]) 

bcc 2.85 
fcc 2.99 
sc 2.71 

1.78 
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wavefunction based on one ls STO per atom, their results are as shown in Table 4. 
Also given in Table 4 are more exact Hartree-Fock results for the sc atomic 
hydrogen crystal [22], the "Kislow" estimate of the correlation energy, and the 
optimized results of the present study. The one-STO MPW results on solid hydro- 
gen are directly comparable with the linear polymer results, and unambiguously 
indicate a significant energetic destabilization accompanying the condensation 
of linear hydrogen chains into a solid of any cubic symmetry. The conclusion 
remains unaltered even if we compare the present linear-chain results with the 
best Hartree-Fock calculation on the solid. Furthermore, we note that the energy 
difference is large compared with any reasonable assumption as to possible 
differences in the correlation energies of the two systems. 

The observations of the preceding paragraph may help to explain why the nearest- 
neighbor distances calculated for all the cubic solid hydrogen structures are so 
much larger than that in the linear chain. If we think of solid hydrogen as being 
formed by bringing together linear chains, there will be a repulsion between 
neighboring chains, and the optimum cubic configuration will have a larger 
intrachain spacing so as to increase the interchain separation. However, the data 
are also suggestive of a rather interesting alternative proposed by Brovman, 
Kagan, and Kholas [23, 24], namely that under certain conditions the most stable 
structure for three-dimensional atomic hydrogen may not be cubic at all, but may 
instead consist of linear filaments which are separated from each other by greater 
distances than that of nearest neighboring atoms of the same filament. An exami- 
nation of this question will be the subject of another communication [-25]. 
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